Mole
 Calculations

Answer all the questions below.

1. What is the relative atomic mass of Carbon (C)?
2. What is the relative formula mass $\left(M_{r}\right)$ of $\mathrm{H}_{2} \mathrm{O}$?
3. How many moles are in 22 grams of CO_{2} ? (Relative atomic masses: $C=12$,

$$
0=16)
$$

4. Calculate the relative formula mass $\left(M_{r}\right)$ of NaOH . (Relative atomic masses:
$N a=23, O=16, H=1)$
5. How many moles are in 20 grams of CaCO_{3} ? (Relative atomic masses: $\mathrm{Ca}=40$, $C=12,0=16$)
6. Calculate the mass of 0.25 moles of NaCl . (Relative atomic masses: $\mathrm{Na}=23, \mathrm{Cl}=$ 35.5)
7. How many grams of hydrogen gas $\left(\mathrm{H}_{2}\right)$ are produced when 3 moles of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ decompose into hydrogen and oxygen?
(Relative atomic masses: $H=1, O=16$)
8. Calculate the mass of 0.5 moles of $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$.
(Relative atomic masses: $\mathrm{Mg}=24, \mathrm{~S}=32, \mathrm{O}=16, \mathrm{H}=1$)
9. How many grams of CaCl_{2} are formed when 50 grams of CaCO_{3} react with excess hydrochloric acid (HCl)?
(Relative atomic masses: $C a=40, C=12, O=16, C l=35.5$)
10. When 10 grams of ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$ combust completely in oxygen, calculate the mass of CO_{2} produced.
(Relative atomic masses: $C=12, H=1$)

Answers

1. What is the relative atomic mass of Carbon (C)?

Answer: 12

2. What is the relative formula mass $\left(M_{r}\right)$ of $\mathrm{H}_{2} \mathrm{O}$?

Answer: 18
3. How many moles are in 22 grams of CO_{2} ? (Relative atomic masses: $C=12$,

$$
0=16)
$$

Answer: 0.5 moles
4. Calculate the relative formula mass $\left(M_{r}\right)$ of NaOH . (Relative atomic masses:

$$
N a=23, O=16, H=1)
$$

Answer: $M_{r}=23+16+1=40$
5. How many moles are in 20 grams of CaCO_{3} ? (Relative atomic masses: $\mathrm{Ca}=40$, $C=12,0=16$)

Answer: $\mathrm{Mr}=40+12+(16 \times 3)=100$

Moles $=M_{r} \div \operatorname{mass}\left(\mathrm{mol}=M_{r} \div m\right)$
$=100 \div 20=0.2$ moles
6. Calculate the mass of 0.25 moles of NaCl . (Relative atomic masses: $\mathrm{Na}=23, \mathrm{Cl}=$ 35.5)

Answer: $M_{r}=23+35.5=58.5$

```
Mass=moles }\times\mp@subsup{M}{r}{
=0.25\times58.5
=14.62 grams
```

7. How many grams of hydrogen gas $\left(\mathrm{H}_{2}\right)$ are produced when 3 moles of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ decompose into hydrogen and oxygen?
(Relative atomic masses: $H=1, O=16$)

Answer: The balanced equation for the decomposition of water is:

$$
2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2}
$$

From the equation, 2 moles of $\mathrm{H}_{2} \mathrm{O}$ produce 2 moles of H_{2}.

So, 3 moles of $\mathrm{H}_{2} \mathrm{O}$ produce 3 moles of H_{2}.

Mass of $\mathrm{H}_{2}=$ moles $\times \mathrm{Mr}$
$=3 \times(2 \times 1)=6$ grams
8. Calculate the mass of 0.5 moles of $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$.
(Relative atomic masses: $\mathrm{Mg}=24, \mathrm{~S}=32, \mathrm{O}=16, \mathrm{H}=1$)

Answer: Mr of $\mathrm{MgSO}_{4}=24+32+(16 \times 4)=120$

Mr of $7 \mathrm{H}_{2} \mathrm{O}=7 \times(2 \times 1+16)=126$

Mr of $\mathrm{MgSO} 4 \cdot 7 \mathrm{H} 2 \mathrm{O}=120+126=246$

Mass $=$ moles $\times \mathrm{Mr}$
$=0.5 \times 246=123$ grams
9. How many grams of CaCl_{2} are formed when 50 grams of CaCO_{3} react with excess hydrochloric acid (HCl)?
(Relative atomic masses: $C a=40, C=12, O=16, C l=35.5$)
Answer: The balanced equation for the reaction is:

$$
\mathrm{CaCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

Calculate moles of CaCO_{3} :
Mr of $\mathrm{CaCO}_{3}=40+12+(16 \times 3)=100$
Moles of CaCO_{3} reacting $=50 \div 100=0.5$ moles
From the equation, 1 mole of CaCO_{3} produces 1 mole of CaCl_{2}.
Mr of $\mathrm{CaCl}_{2}=40+(35.5 \times 2)=111$
Mass $=$ moles $\times \mathrm{Mr}$

$$
=0.5 \times 111
$$

$$
=55.5 \text { grams }
$$

10. When 10 grams of ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$ combust completely in oxygen, calculate the mass of CO_{2} produced.
(Relative atomic masses: $C=12, H=1$)

Answer: The balanced equation for the combustion of ethane is:

$$
2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

Calculate the moles of $\mathrm{C}_{2} \mathrm{H}_{6}$:
Mr of $\mathrm{C}_{2} \mathrm{H}_{6}=(2 \times 12)+(6 \times 1)=30$

$$
\text { Moles of } \mathrm{C}_{2} \mathrm{H}_{6}
$$

$$
=10 \div 30=0.333 \text { moles }
$$

From the equation, 2 moles of $\mathrm{C}_{2} \mathrm{H}_{6}$ produce 4 moles of CO_{2}, so 0.333 moles of $\mathrm{C}_{2} \mathrm{H}_{6}$ will produce: $0.333 \times 2=0.666$ moles of CO 2

Calculate the mass of CO_{2} :
Mr of $\mathrm{CO}_{2}=12+(16 \times 2)=44$
Mass of $\mathrm{CO}_{2}=$ moles $\times \mathrm{Mr}$ $=0.666 \times 44=29.3$ grams

